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ABSTRACT

In preparation for the launch of the NASA Cyclone Global Navigation Satellite System (CYGNSS), a

variety of observing system simulation experiments (OSSEs) were conducted to develop, tune, and assess

methods of assimilating these novel observations of ocean surface winds. From a highly detailed and realistic

hurricane nature run (NR), CYGNSS winds were simulated with error characteristics that are expected to

occur in reality. The OSSE system makes use of NOAA’s HWRF Model and GSI data assimilation system

in a configuration that was operational in 2012. CYGNSS winds were assimilated as scalar wind speeds and as

wind vectors determined by a variational analysis method (VAM). Both forms of wind information had

positive impacts on the short-term HWRF forecasts, as shown by key storm and domain metrics. Data as-

similation cycle intervals of 1, 3, and 6 h were tested, and the 3-h impacts were consistently best. One-day

forecasts from CYGNSS VAM vector winds were the most dynamically consistent with the NR. The OSSEs

have a number of limitations; the most noteworthy is that this is a case study, and static background error

covariances were used.

1. Introduction

Ocean surface wind observations from satellites have

been shown to improve the accuracy of numerical

weather analyses and forecasts (Atlas et al. 2001; Atlas

1997; Candy et al. 2009; Leidner et al. 2003; Schulz et al.

2007). Accurate surface wind analyses and forecasts are

key to estimating the potential damage from storm surge

(the deadliest tropical storm hazard; Rappaport et al.

2009; Powell and Reinhold 2007) and wind. However,

most current satellite observing systems are unable to

provide accurate ocean surface wind speed data in areas

of precipitation and generally have limited temporal

resolution (e.g., 1–2 overpasses per day). Of all these

systems, only L-band sensors, such as those on the Soil

Moisture Active Passive (SMAP; Entekhabi et al. 2010)

satellite and the NASA Cyclone Global Navigation

Satellite System (CYGNSS; Ruf et al. 2016a), can

observe winds in the presence of heavy rain, such as

occurs in the inner core of a tropical cyclone (TC).

CYGNSS is expected to alleviate some of the current

deficiencies in temporal and spatial sampling of the

surface wind field of tropical cyclones. CYGNSS is also

expected to provide improved wind speed observing

capabilities to observe the structure and evolution of

TCs. This will also improve the accuracy of the wind

products that are inputs to storm surge models: for ex-

ample, the Coastal and Estuarine Storm Tide (CEST)

and the Sea, Lake, andOverland Surges fromHurricane

(SLOSH) models.

This study focuses on the impact of accurate near-

surface wind observations over the ocean on numerical

weather prediction (NWP) analyses and forecasts di-

rectly. It should be noted that such data also have the

potential to indirectly improve NWP by improving the

model parameterizations of wind stress and sensible and

latent heat fluxes. These processes are critical to air–sea

interactions parameterized in global and regional weather

forecast models and are key to our understanding of the
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atmosphere–ocean system. Through assimilation of such

wind data, the depiction of the boundary layer can also be

improved in weather forecast models (Atlas et al. 1999,

2001).

Improvements in tropical cyclone forecasts over the

past few decades have mainly been due to advances in

numerical models (Atlas et al. 2015b; Gopalakrishnan

et al. 2012; Rappaport et al. 2009; Willoughby et al.

2007). However, forecasting the intensity change of

tropical cyclones remains a challenging problem. One

reason for the slower improvement in intensity forecasts

compared to track forecasts is the lack of frequent

sampling of the inner core of the storm (Rogers et al.

2013). Presently, only TC-penetrating aircraft collect

measurements in the inner core. These in situ mea-

surements are only collected for about 30% of the life-

times of tropical cyclones in theAtlantic and even less in

the eastern North Pacific (Rappaport et al. 2009). Re-

connaissance aircraft (Aberson et al. 2006) such as the

NOAA P-3 host the most advanced and accurate in-

strumentation, including stepped frequency microwave

radiometers (SFMRs; Uhlhorn et al. 2007) and global

positioning system (GPS) dropwindsondes (Hock and

Franklin 1999). With limited dwell time and limited re-

sources (aircraft and dropsondes), the inner cores of even

the best-monitored TCs are relative data voids (Uhlhorn

and Nolan 2012). A single, well-placed dropwindsonde,

properly reduced by empirical methods to 10-m equiva-

lent wind speed, can estimate maximum surface wind

speed and hence the TC intensity. However, a fleet of

dropwindsondes would be required to map out the com-

plete TC surface wind field to depict the full destructive

potential of a storm (Powell and Reinhold 2007).

CYGNSS was designed to address these observational

deficiencies. The CYGNSS GPS receivers hosted on eight

minisats launched on 17December 2016measure reflected

ocean surface signals of opportunity (SoO) broadcast by

the existing GPS satellites. This bistatic configuration, in

which the transmitter and receiver are on different plat-

forms (Fig. 1), contrasts with the monostatic configuration

of scatterometers in which the transmitter and receiver are

collocated. Using a constellation of eight small satellites at

an altitude of 510km in a single, low-inclination (358) orbit
plane, CYGNSS samples the tropics and subtropics at a

nominal spatial resolution of 25km with improved tem-

poral sampling, compared to polar orbiting satellites. For

any given area on Earth between 388N and 388S latitude,

the spatial and temporal sampling of the ocean surface by

CYGNSS constellation is random, since themovements of

the GPS and CYGNSS constellations are not coordinated

(Ruf et al. 2016b). But the orbits of the CYGNSS con-

stellation generally produce measured reflections over an

area the size of a typical tropical cyclone for two 90-min

periods each day, separated by about 12h. An example of

simulated, 6-h coverage over the North Atlantic is shown

and described below [section 2b(2)].

The goal of the study presented here is to assess the

potential utility of CYGNSS observations of ocean

surface wind for hurricane analysis and forecasting.How

might CYGNSS data be expected to improve or change

the analysis and forecasts of tropical cyclones when in-

corporated into a hurricane analysis and forecast sys-

tem? What methods work best to extract information

from the CYGNSS observations? These questions are ex-

amined with an observing system simulation experiment

(OSSE) approach (Hoffman and Atlas 2016). The experi-

ments conducted extend the experiments ofMcNoldy et al.

(2017, hereafter M17). Both M17 and the present study

conducted OSSEs using NOAA’s Atlantic Oceanographic

andMeteorological Laboratory (AOML) hurricane OSSE

system that assimilates CYGNSS observations simulated in

different ways during the lifetime of one simulated hurri-

cane. In an OSSE, the nature run (NR), or truth, provides

both a point of comparison forOSSEexperiment results, as

well as the source for simulating all observations assimi-

lated. In this study, a pair of self-consistent global and

regional NRs is used: the European Centre for Medium-

Range Weather Forecasts (ECMWF) model (T511 NR)

and an embedded Advanced Research version ofWeather

Research and Forecasting (WRF-ARW) nested high-

resolution (up to 1-km resolution) simulation.

M17 found a positive impact on TC analyses and

forecasts of adding CYGNSS observations to a control

experiment through a progression of four experiments,

FIG. 1. Geometry of bistatic radar measurement of GPS-based

quasi-specular surface scattering. The GPS direct signal (Trans-

mitter) provides location, timing, and frequency references, while

the forward scattered signal received by CYGNSS (Receiver)

contains ocean surface information. Image from Claziria and

Zavorotny (2015).
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which added 1) realistic CYGNSS wind speed observa-

tions retrieved at high (12.5 km) resolution and 2) at

nominal (25 km) resolution, 3) perfect wind speed ob-

servations, and 4) perfect wind vector observations.

Both perfect simulated CYGNSS observation datasets

(3 and 4) are at the same resolution (12.5 km) and spatial

coverage. The noisy, high-resolution winds had the

smallest impact because the quality control (QC)

procedures rejected much of these data. For this rea-

son, experiments in this study use only nominal-

resolution CYGNSS winds. The control experiment

and experiment 2 of M17 form the baseline for the new

experiments described here and are denoted CTRL6

and CYG6 below. The 25-km-resolution simulated

CYGNSS wind speeds of M17 are the basis of all ex-

periments reported here.

Furthermore, in the present study, motivated by the

very good results of experiment 4 of M17, direct assim-

ilation of the CYGNSS wind speeds is compared to the

assimilation of CYGNSS VAM wind vectors created

from the wind speeds, as described in detail by Leidner

et al. (2018, hereafter L18). The CYGNSS VAM wind

vectors are a result of a variational analysis that com-

bines the CYGNSS wind speeds and a background wind

field (L18). In the present case, the background wind

fields are 6-h forecasts of the surface wind from a

Hurricane Weather Research and Forecasting (HWRF)

control experiment described below in section 3.

While M17 considered perfect wind vectors, here, the

effect of observation errors is propagated from the

CYGNSS raw observation to CYGNSS winds through

the VAM.

In addition, since TCs evolve and propagate quickly,

shorter DA cycle intervals might yield superior results.

In the DA system used here, even though observation

innovations are evaluated with respect to the back-

ground at the time of the observation, these innovations

are all combined to influence the model state at the

central analysis time. This approximation is most ap-

propriate for short DA cycles. However, every time the

model is initialized with observations, there is some

adjustment. For TCs, this adjustment can result in sub-

stantial increases (spinup) or decreases (spindown) of

intensity. Therefore, there are tradeoffs in selecting the

optimal DA cycle interval. In this study, DA cycle in-

tervals of 1, 3, and 6h are tested, whereas M17 used 6-h

cycles in all experiments.

The paper is organized as follows. Section 2 describes

the OSSE framework. Section 3 presents the experi-

mental design and section 4 the results. Section 5 sum-

marizes the present study with a focus on its findings and

its limitations and briefly describes future planned

studies.

2. OSSE framework

To conduct realistic OSSEs related to hurricane ana-

lyses and forecasts, AOML and the University of Miami

developed a new regional OSSE framework (Atlas et al.

2015a,b,c; McNoldy et al. 2017). A schematic of this

OSSE framework is illustrated in Fig. 2.

a. Nature run

The OSSE framework is based on a high-resolution

regional nature run (Nolan et al. 2013) calledHNR1 that

was created by embedding the WRF-ARW Model,

version 3.2.1, within a lower-resolution global nature

run. HNR1 has an outer fixed domain of 27-km grid

spacing, spanning the tropical Atlantic basin, and

three telescoping, storm-following, nested domains of 9-,

3- and 1-km grid spacing. Sixty model layers span the

vertical domain from the surface to 50hPa. The boundary

conditions are provided by a global nature run producedby

the ECMWF (version c31r1) T511 model with 91 vertical

levels, here called the T511 NR (Andersson and Masutani

2010). The T511 NR is a free-running forecast from

1200UTC1May2005 to 1200UTC1June2006.Theperiod

ofHNR1 is from 0000UTC 29 July to 0000UTC 11August

2005. The two nature runs have similar storm tracks, but in

the regional nature run, the hurricane is simulated with

more realistic intensity, scale, and structure and un-

dergoes rapid intensification during the period cen-

tered on 4 August 2005.

b. Simulated observations

Within a typical OSSE framework, all observations

should be simulated from a relevant nature run, and

observation errors appropriate to each observation type

FIG. 2. Basic flowchart of the regional OSSE framework.
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should be added. In the hurricane OSSE system, observa-

tions are simulated by sampling the observed quantities

from the T511 NR for conventional and routinely assimi-

lated satellite data, whereas the CYGNSS observations are

simulated with CYGNSS Science Team end-to-end simu-

lator (E2ES; O’Brien 2014) based on the HNR1 winds.

Typical errors are added to the simulated conventional and

satellite observations, while a wind retrieval error model

assigns realistic errors to the simulated CYGNSS wind

speed. In addition, vector winds are determined from

simulated CYGNSS wind speeds using a 2D variational

analysis method (VAM). The VAM analyzes the simu-

lated CYGNSS wind speeds given an a priori, gridded

ocean surface wind field. The resulting wind direction and

speed in theVAManalysis are assigned at each CYGNSS-

retrieved wind location to produce VAM CYGNSS wind

vectors. More detailed descriptions of the methods and

data sources used to simulate observations in our study are

provided below.

1) CONVENTIONAL AND SATELLITE

OBSERVATIONS

Conventional and satellite observations corresponding

to those assimilated in National Centers for Environmen-

tal Prediction (NCEP) operations were simulated from the

T511 NR described in section 2a. Realistic observation

errors by observation type are based on estimates in

NCEP’s Gridpoint Statistical Interpolation (GSI) analysis

system and added to each simulated observation. The er-

rors are drawn from a zero-mean Gaussian distribution

using theO2 B error estimates as the standard deviation

(Errico et al. 2013). Because of the close correspondence

between the global T511 NR and the embedded regional

WRF-ARW HNR1, the simulated conventional and sat-

ellite observations reflect the same synoptic conditions as

HNR1 used to simulate the CYGNSS observations, just

realized by a global model. All conventional observations

of temperature, winds, moisture, and surface pressure, at-

mospheric motion vectors, and satellite data types that

were in operational use in 2012 are simulated from the

T511 NR. [See Table 1 of Atlas et al. (2015c) for the de-

tailed list of satellite data sources.]

2) CYGNSS WIND SPEED OBSERVATIONS

The NASA CYGNSS Science Team simulated the

CYGNSS wind speed observations with the E2ES,

which takes orbital ephemeris for the actual GPS and

simulated CYGNSS satellites to simulate reflected

power from the gridded ocean surface wind fields. The

reflected GPS signal power from the central reflecting

point, that is, the specular point (SP; in Fig. 1), as well as

weaker reflections from a region approximately 100 km

around the SP known as the ‘‘glistening zone,’’ are

recorded in the measurement space of GPS signal delay

and Doppler shift, known as a delay-Doppler map

(DDM).DDMs of reflected power (watts) are converted

to DDMs of bistatic radar cross section s0 (m2). The s0

DDMs are the primary input to the CYGNSS wind

speed retrieval algorithm.

For HNR1, E2ES generated specular points at a ca-

dence of 1Hz, using the highest-available-resolution

HNR1 grid (27, 9, 3, or 1 km). Figure 3 shows simu-

lated CYGNSS winds in the 27-km domain at

1500 UTC 3August 2005. Since the outer three grids are

available every 30min and the innermost domain every

6min, the maximum time difference between NR out-

puts is 15min. As the HNR1 nested grids are storm

following, CYGNSS SPs in or near the inner core are

simulated using 1-km-resolution HNR1 winds. Specular

points farther from the hurricane are simulated using

HNR1 grids at lower resolutions, depending on location.

Consequently, the highest resolution is utilized in the

region of highest wind speeds. Note how the coverage

changes as the observation window is shortened from

63 to61.5 to60.5 h, corresponding time windows used

for 6-, 3-, and 1-hourly data assimilation (DA) cycling.

This change in sampling has important consequences for

the impact of the assimilated data (explored further in

section 4).

The HNR1 winds sampled by the E2ES at the

CYGNSS locations are ‘‘perfect.’’ E2ES simulates re-

alistic variation in measurement uncertainties with two

FIG. 3. Example of sampling of the North Atlantic by the sim-

ulated CYGNSS constellation,63 h around 1500UTC 3Aug 2005.

The locations of simulated CYGNSS data in the 6-h window are

plotted as colored dots. The blue and green dots show the locations

of subsets of all observations within61.5 and60.5 h, respectively,

of 1500 UTC. CYGNSS observation locations are overlaid on

HNR1, 27-km-resolution (d01) 10-m wind speed field, valid at the

same time.
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additive error components due to uncertainty in 1) the

calibration of s0 DDMs and 2) the wind retrieval algo-

rithm, assuming perfectly calibrated s0 DDMs. The s0

DDMuncertainty termwas determined by theCYGNSS

Science Team from a level 1 processing flowdown error

budget to have zero mean and a standard deviation of

1.2ms21. The wind retrieval error term is more complex,

depending on wind speed and range-corrected gain

(RCG). In a simulated calibration exercise, the mean and

variance of nonnormalGaussian distributions (generalized

normal) were fit to level 2 data in four wind speed ranges

and sixRCGranges.Using thewind speed from theHNR1

at the specular point and the RCG calculated from the

orbital ephemeris, Gaussian pseudorandom errors are

added to the perfect observations (A. O’Brien 2016, per-

sonal communication). Observation error computed for

the simulated CYGNSS-retrieved winds is a mixture of

two Gaussian errors: one normal and another nonnormal,

with typical values of 2–4ms21, depending on the factors

described above.

3) VAM CYGNSS WIND VECTOR OBSERVATIONS

CYGNSS data do not include wind direction. With

alternative GPS receiver hardware or ground process-

ing, direction might be extracted from the reflected

signal (e.g., Komjathy et al. 2004). To assess the benefit

of adding directional information, a two-dimensional

VAM (Hoffman 1982, 1984) is applied following L18 to

simulated CYGNSS wind speeds to generate dynami-

cally realistic vector wind field analyses. The VAM has

been applied to determine wind direction from among

2–4 wind ambiguities from both NSCAT andQuikSCAT

scatterometer missions (Hoffman et al. 2003). The VAM

has also been used to generate nearly 30 years of

6-hourly global ocean surface wind analyses, combining

all available passive microwave and scatterometer data

since 1987 (Atlas et al. 1996, 2011). The VAM uses an a

priori, or first guess, gridded surface wind field as a

starting point for each analysis. In this study, 6-h fore-

casts on a 9-km-resolution outer domain from anHWRF

regional Control OSSE experiment (CTRL6, described

below in section 3) are used as the VAM analysis first-

guess fields. This choice of first-guess winds is intended

to emulate what might be the best available choice in

real-time operational forecasting. A VAM analysis is

generated four times a day at 0000, 0600, 1200, and

1800 UTC for the period of the OSSE (a 4-day period

described below in section 3). The VAM analysis u- and

y-wind components are interpolated in space and time to

the set of simulated CYGNSS wind speed locations as-

similated. These derived observations are referred to

hereafter as VAM CYGNSS vector winds. The VAM

CYGNSS vector wind error is taken to be the simulated

CYGNSS observation error determined by the E2ES

plus the RMS VAM error compared to observations

(i.e., root-mean-square of CYGNSS wind speed minus

VAM analysis wind speed) to account for the influence

of the VAM analysis on observation error. The VAM

analysis cost function balances the fit to observations

with a minimum departure from the background, so the

RMS VAM error implicitly includes an estimate of

background error.

c. Data assimilation and forecast model

Since a global modeling system is heavily parameter-

ized and cannot sufficiently resolve the small scales that

are major contributors to the TC rapid intensification

processes, a regional model specifically developed for

TCs is used in this study. HWRF is used specifically to be

consistent with the goals of the Hurricane Forecast

Improvement Project (Gall et al. 2013) and because the

research version closely parallels the operational ver-

sion. This approach allows us to assess the impact of new

observing systems through improved HWRF initial

conditions (ICs) and is a similar setup used by Atlas

et al. (2015b) to investigate the potential impact of an

Optical Autocovariance Wind Lidar (OAWL) on TC

prediction. In our experiments, we use the 2012 version

of the operational NCEP HWRF DA system. The

HWRF Model parameterizations include the Global

Forecast System (GFS) planetary boundary layer

scheme, the new simplified Arakawa–Schubert cumulus

scheme (only for the parent domain since convection is

explicit in the nested domain), the Ferrier microphysics

scheme, and the Geophysical Fluid Dynamics Labora-

tory (GFDL) scheme for shortwave and longwave ra-

diation. This version (v3.5; Tallapragada et al. 2013;

Atlas et al. 2015c) is configured in our experiments

with a fixed 9-km parent domain and a 3-km nested

storm-following domain (cf. Fig. 4). In the HWRF DA

system, NCEP’s GSI three-dimensional variational

(3DVar) scheme assimilates the observations. QC fol-

lows GSI’s practice of gross outlier removal by com-

parison with background values, and CYGNSS data are

treated as ship observations for QC purposes. Data as-

similation is performed on the 9-km domain only, with

no vortex relocation.

3. Experimental design

Nine experiments varying the use of the CYGNSS

observations and the frequency of the DA cycling in-

terval are carried out within the OSSE system to assess

the simulated impact of CYGNSS observations on

hurricane analysis and forecasting. First, a control DA

experiment (CTRL) assimilates standard conventional
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data that are routinely assimilated in the 2012 GFSData

Assimilation System (GDAS), including radiosondes,

atmospheric motion vectors, and numerous satellite-

based observations [see section 2b(2)], but no CYGNSS

observations. This is followed by an experiment where

CYGNSS wind speeds are added to the control (CYG)

and an experiment where VAM CYGNSS wind vectors

are added to the control (VAM). Each of theseOSSEs is

conducted at three data assimilation frequencies: 6-, 3-,

and 1-hourly. (The numeral 6, 3, or 1 is added to the

experiment names to denote cycling frequency; see

Table 1.) Note that all simulated observations are

binned/grouped by time at these frequencies: that is,63-,

61.5-, and60.5-h time windows around the DA analysis

times, respectively. For convenience, in the text, we will

refer to all the CTRL, CYG, and VAM experiments

collectively as EXP; CTRL6, CYG6, and VAM6 exper-

iments collectively as EXP6; and similarly for EXP3

and EXP1.

The nine experiments and the average amount of

CYGNSS data assimilated in each DA cycle are listed in

rows 3 and 4 of Table 1. Although the total number of

observations is the same, these are divided into smaller

chunks with increased cycling frequency. Also, the

number of assimilated variables doubles for the VAM

experiments, since there are two wind components (u

and y wind) for each simulated CYGNSS wind speed in

the CYG experiments. All of the experiments are ini-

tialized at 0000 UTC 1 August 2005. GFS global control

OSSE analyses described by Casey et al. (2016) are used

to provide initial and lateral boundary conditions.

Cycling is performed through 0000 UTC 5 August for a

total of 16, 32, and 96 analyses for experiments with 6-,

3-, and 1-h cycles, respectively. A 5-day HWRF forecast

is initialized every 6 h in all experiments. Each experi-

ment is then verified against the HNR1. Forecast initial

times before 0600 UTC 2 August are discarded to

eliminate the effects of model adjustment to the cold

start from the global analysis. Error statistics reported

below from these nine OSSE experiments are com-

pared using the final 12 forecasts in the experiment

period (i.e., with initialization times every 6 h from

0600 UTC 2 August to 0000 UTC 5 August).

4. OSSE results

The results of the experiments described in the pre-

vious section are presented here in three parts: 1) sta-

tistical summaries of the errors in TC track and intensity,

2) domain-wide errors, and 3) physical interpretations of

the analyses and forecasts of the 10-m wind field.

a. Assessment of TC track and intensity errors

To evaluate and compare the effect of simulated

CYGNSSwind speed andVAMCYGNSSwind vectors,

tropical cyclone metrics are calculated and compared to

HNR1 values (truth). Those metrics are storm center

position, minimum sea level pressure (MSLP; hPa) and

the maximum wind speed (kt; 1 kt 5 0.5144m s21; Gall

et al. 2013). For each 5-day forecast within a givenOSSE

experiment (forecasts are started every 6 h at synoptic

times), error metrics are computed with respect to the

FIG. 4. Configuration ofmodel domains. The 27-km-resolution domain (d01) ofHNR1 is shown

in blue, and the 9-km (d01) and nested 3-km (d02) OSSE grids are shown in black.
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HNR1 every 6 h. Error in all cases is defined as experi-

ment minus the truth (EXP 2 HNR1). Mean and stan-

dard deviation of error are computed from 12 forecasts

(N 5 12) at each forecast lead time to 96h. (However,

N is reduced for 108- and 120-h forecasts because some

of the later verification times move the HNR1 hurricane

close to the boundaries of our regional OSSE domain.

For this reason, we show results from here forward for

0–96-h forecasts.) Note that we calculate mean error,

not mean absolute error. Nevertheless, track errors are

always positive. Also, since the HWRF OSSE hurri-

canes are uniformly less intense than the HNR1 hurri-

cane, all errors are positive (for MSLP) or negative (for

maximum wind speed). So, in an absolute sense, the

results shown are equal to mean absolute error. Note

that while 12 is not a large number of forecasts for as-

sessing statistical significance, and these forecasts are all

during the lifetime of a single simulated hurricane, the

average performance does provide an indication of the

variation of error over the forecast hours and between

OSSE experiments.

Figures 5a–c show the hurricane track error for each

cycling frequency (6, 3, and 1 hourly). In each panel, the

mean and standard deviation of the track errors with

respect to theHNR1 are plotted as a function of forecast

hour for CTRL, CYG, and VAM experiments. Overall,

the track errors among the experiments for any given

cycling frequency are quite similar; that is, forecast error

growth dominates CYGNSS impact. All OSSE experi-

ments and cycling frequencies produce similar position

errors for 1–3-day forecasts (0–72h), but EXP6 errors

are smaller than EXP3 and EXP1 errors for 3–4-day

forecasts. An inverse relationship between cycling

frequency and observation data coverage means that the

3–4-day track errors are increased for EXP3 and EXP1,

compared to EXP6. The large-scale environment is better

characterized by the increased data coverage of 6-hourly

cycling. Initial position error (forecast hour 0) is smallest

for EXP3 (Fig. 5b; ;50km). Judging from the overlap of

one-standard-deviation bounds, analysis errors are likely

not statistically significant. The differences in forecast track

error statistics by cycling frequency are large enough to

explore the statistical significance between different DA

cycling intervals (see discussion of Fig. 6 below). For

these OSSE experiments based on the HNR1 case,

CYGNSS data do not seem to improve or degrade the

forecast track, but the differences in track error are

sensitive to cycling frequency.

Figures 5d–f are similar in presentation to the first

row, but for MSLP. As with track error, there are sig-

nificant differences between experiments using different

cycling frequencies. But unlike track error, EXP3 pro-

duces the lowest overall MSLP errors. For example,

mean MSLP analysis errors (forecast hour 0) are 19–

22 hPa for EXP6, 11–13 hPa for EXP3, and 13–17 hPa

for EXP1. The standard deviation of MSLP forecast

errors tends to decrease for all experiments, indicative

of the forecast model consistently spinning up initially

weak storms. Notice that unlike track error, MSLP error

is sensitive to both cycling frequency and the assimila-

tion of CYGNSS data. For all cycling frequencies, the

VAMOSSE experiments have the lowest MSLP errors,

compared to CTRL and CYG experiments, over fore-

cast hours 0–48. The positive impact of CYGNSS data

evident in these average MSLP error statistics is large

enough to explore statistical significance further (see

discussion of Fig. 7 below).

Figures 5g–i show the error in maximum wind speed

for all OSSE experiments. The monotonic reduction in

maximum wind speed error (i.e., less negative) for all

experiments during forecast hours 0–48 is another re-

flection of the forecast model consistently spinning up

initially weak storms. The maximum wind speed is closely

tied to MSLP through the wind–pressure relationship

(Knaff and Zehr 2007). Both metrics reflect hurricane in-

tensity. Like theMSLPerrors already discussed,maximum

wind speed errors are smallest for EXP3, particularly

during the start (out to 48h) of the forecasts. This indicates

that differences in these hurricane error statistics in our

OSSE study are primarily due to cycling frequency.

However, as with MSLP errors, assimilation of CYGNSS

observations reduces maximum wind speed analysis and

TABLE 1. List of experiments; 6, 3, and 1 denote the cycle interval in h.

Experiment name Description

Average number of observations

assimilated

6 h 3 h 1 h

CTRL6, CTRL3, CTRL1 Conventional satellite/surface/sounding

data; no CYGNSS

51 547 25 773 8591

CYG6, CYG3, CYG1 CTRL plus all available CYGNSS wind

speed (CYGNSS counts only)

15 091 7545 2517

VAM6, VAM3, VAM1 CTRL plus VAM wind vectors at CYGNSS

retrieval coordinates (CYGNSS counts only)

30 182 15 090 5034
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forecast errors through forecast hours 0–48 for all cycling

frequencies by 0–8kt.

The results in Fig. 5 point to potentially important im-

pacts of assimilating simulated CYGNSS observations on

hurricane intensity (i.e., reduced MSLP and maximum

wind speed errors) and cycling frequency. To explore this

further, the statistical significance of differences in forecast

error betweenOSSE experiments is investigated. First, the

influence of cycling frequency is shown in Fig. 6 using the

three CTRL OSSE experiments. CTRL3 and CTRL1

experiments are investigated, using CTRL6 errors as a

common baseline. Using the CTRL experiments removes

the influence of simulatedCYGNSS observations from the

evaluation of cycling frequency. MSLP error differences

(Fig. 6a) show that assimilation every 3h (CTRL3) im-

proves forecast MSLP by 0–10hPa during the first 24h,

compared to 6-hourly cycling (CTRL6). To assess signifi-

cance, the 95th-percentile confidence interval (CI) from a

two-sided paired t test is plotted with gray semitransparent

shading. The one-sided 95% confidence intervals are also

plotted as light dotted or dash–dotted lines. Where the

one-sided CI lines are greater than zero, the mean exper-

iment MSLP error is less than CTRL6 error with greater

than 95% confidence. Figure 6a shows that the CTRL1

experiment improvements are marginally significant at the

95% confidence level for forecast hours 0–60. But the

improvement by assimilating every 3h is larger than in

experiment CTRL1 during forecast hours 0–24 and with

95% significant difference between CTRL6 and CTRL3.

The improvement from assimilation at 1- or 3-h intervals

after 48h reduces to near zero for the remainder of the

forecast period.

The statistical significance of impacts on forecast

maximum wind speed for different cycling frequen-

cies is shown in Fig. 6b. The figure can be interpreted

similarly to Fig. 6a and shows results similar to MSLP.

Therefore, forecasts of both MSLP and maximum

wind speed are most accurate with 3-hourly cycling,

and the improvements are statistically significant for

at least the first 24 h.

FIG. 5. Average storm forecast errors with light6 standard deviation lines plotted for (a),(d),(g) 6-; (b),(e),(h) 3-; and (c),(f),(i) 1-hourly

DA cycling experiments.Mean errors/deviations are colored byOSSE experiment: black/gray for CNTL, red/light red for CYG, and blue/

light blue for VAM.
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Next, the influence of CYGNSS data on the 3-hourly

cycling experiments is shown in Fig. 7. CYG3 and

VAM3 experiments are investigated, using CTRL3 er-

rors as a common baseline. Figure 7 shows the difference

between CYG3/VAM3 experiment errors and CTRL3

errors (i.e., CTRL3 2 EXP3) for MSLP and maximum

wind speed. MSLP error differences (Fig. 7a) indicate

that assimilation of CYGNSS data (both in scalar and

vector form; CYG3 vs VAM3, respectively) improves

the forecast MSLP by 2–5hPa during the first 48 h. To

assess significance, the 95th-percentile CI from a two-

sided paired t test is plotted with light blue and light

orange semitransparent shading. Since the OSSE fore-

cast hurricanes are uniformly less intense than HNR1, a

more appropriate hypothesis is that the CYGNSS ob-

servations increase the intensity of the analyzed and

forecast hurricane. There, the one-sided 95% confi-

dence intervals are also plotted as dotted lines. Where

the dotted, one-sided CI lines are greater than zero, the

mean experiment MSLP error is less than CTRL3 error

FIG. 6. (a) MSLP forecast error and (b) maximum wind speed forecast error of experiments CNTL3 (heavy

dashed black) and CNTL1 (solid black) with respect to CNTL6 forecast errors. The 95th-percentile CIs are plotted:

two-sided CIs are plotted in transparent gray, and one-sidedCIs are plotted with a thin dash–dotted line for CNTL3

and a dotted line for CNTL1. (c),(d) As in (a),(b), but for CYG3 and CYG1 errors with respect to CYG6 forecast

errors. (e),(f) As in (a),(b), but for VAM3 and VAM 1 errors with respect to VAM6 forecast errors.
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with 95% confidence. Figure 7a shows that the VAM3

experiment improvements are marginally significant at

the 95% confidence level for forecast hours 0–48. The

improvement by assimilating VAM3 vectors is some-

what larger than in experiment CYG3 during forecast

hours 0–36 and with 95% significant difference between

forecast hours 24 and 36. The improvement from as-

similation of VAM CYGNSS vectors after 48 h reduces

to near zero for the remainder of the 5-day forecast

period, whereas the improvement from the assimilation

of CYGNSS wind speed continues in the forecasts until

96 h. But the reduction in error in the CYG3 forecasts

between hours 48 and 96 is only statistically significant

with 95% confidence at forecast hour 72.

The statistical significance of impacts from assimilating

CYGNSSobservationson forecastmaximumwind speedare

shown in Fig. 7b. The figure can be interpreted similarly to

Fig. 7a. Because intensity in terms of maximum wind speed

has the opposite sense of intensity in terms of MSLP (see

above), improvements in CYG3 and VAM3 forecasts with

respect toCTRL3 appear asmean error differences less than

zero. Therefore, where the one-sided CI lines (dotted lines)

are less than zero, the mean experiment maximum wind

speed error is less than CTRL3 error with 95% confidence.

The average reduction in maximum wind speed error from

assimilation of CYGNSS observations is 2–6kt over forecast

hours 0–54. The VAM3 error differences from CTRL3 are

significant at the 95% level for forecast hours 0–54.

b. Domain-wide errors

Figure 8 shows the domain-wide error statistics for

10-mwind speeds with respect to theHNR1 10-mwinds.

Given that the 9-km domain dimensions are 411 3 705

and that there are 12 forecasts, the RMS error (square

root of the mean squared vector wind difference) at

each 6-h forecast interval is the result of approximately

3.5 million wind speed differences (EXP 2 HNR1).

Notice that the RMS errors are generally quite small,

increasing from 1–2kt in the analyses (forecast hour 0)

to 3–4 kt for 5-day forecasts. The standard deviation of

those errors also increases from 0.25 to 1 kt. As with the

error statistics presented in Fig. 5, the EXP3 have the

lowest errors at analysis times. The effect of CYGNSS

data can be seen over the first 0–24 forecast hours on a

domain-wide basis. TheRMS error in the analyzed fields

is reduced by small but consistent amounts (0.1–0.25 kt

as forecast time increases) by the assimilation of CYGNSS

data (i.e., compared to CTRL), with the largest reductions

occurring in the 6- and 1-hourly cycling experiments, at

least in part, since CTRL6 and CTRL1 errors are larger

than CTRL3 error. Improvements similar to those in the

10-m, domain-averagedwinds owing toCYGNSSdata can

be seen in other upper-level fields (e.g., 850-hPa temper-

ature and 500-hPa heights; not shown).

Figure 9 shows the absolute integrated kinetic energy

(IKE) differences (errors) between theOSSE experiments

and HNR1, arranged by cycling frequency as in Fig. 8. In

Fig. 9, IKE is the domain integral of the squared 10-mwind

vector, scaled into energy units (Powell and Reinhold

2007). Thus, IKEaccumulates the energy of a 2Dwind field

at a given time to a single, scalar estimate of total energy.

The IKE differences by experiment and by DA cycling

frequency mirror the results presented in Figs. 5 and 7 for

MSLP error, maximumwind error, and domain-wide 10-m

wind error. That is, 3-hourly DA cycling produces the

lowest IKE error for CTRL,CYG, andVAMexperiments,

and the assimilation of CYGNSS data, whether wind

speed or VAM CYGNSS vector data, reduces the IKE

error at all cycling frequencies, which is in agreement with

results presented in McNoldy et al. (2016). As seen in the

FIG. 7. (a) MSLP forecast error and (b) maximum wind speed forecast error of experiments CYG3 (red) and

VAM3 (blue) with respect to CNTL3. The 95th-percentile CIs are plotted: two-sided CIs are plotted in transparent

colors, and one-sided CIs are plotted with thin dotted lines.
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domain-wide errors in Fig. 8, the error reduction from

the assimilation of CYGNSS data is largest in the 6- and

1-hourly cycling experiments, at least in part, since CTRL6

and CTRL1 errors are larger than CTRL3 error.

c. 10-m hurricane wind field

The distribution of surface wind vectors around a

hurricane is its dynamic footprint on the ocean surface.

It reflects the structure of the low-level wind field and

controls interaction with the ocean surface, including

FIG. 9. Absolute IKE error (TJ) as a function of forecast hour for

(a) 6-hourly DA cycling, (b) 3-hourly DA cycling, and (c) hourly

cycling. Error is the difference betweenOSSE experiment IKE and

NR IKE (HNR1).

FIG. 8. Large-scale, domain-averaged, 10-m wind errors (RMS;

m s21) for (a) 6-hourly DA cycling, (b) 3-hourly DA cycling, and

(c) hourly cycling. Experiments are plotted by color as in Fig. 5.
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storm surge, surface fluxes, the wave field, and ocean

mixed layer depth. Next, visualizations of 10-m wind

fields from the HNR1 and OSSE experiments illustrate

the impact of CYGNSS data.

Given the significance of the improvement in 0–48-h

intensity forecasts shown in the previous section, Figs. 10

and 11 illustrate the physical impacts of assimilation of

CYGNSS data on 24-h forecasts of the 10-m wind field.

For the period and geographic region of our study, the

entire hurricane circulation is sampled by CYGNSS

during the two 3-hourly DA cycles each day at 1500

and 1800 UTC. Therefore, 5-day forecasts starting at

1800 UTC on any day during the OSSE experiments

have the benefit of one or two recent 3-hourly DA cycles

with assimilation of CYGNSS data in or near the inner

core of the tropical cyclone. So, 24-h forecasts starting at

1800 UTC should show the clearest benefit from as-

similation of these data.

Figure 10 shows 10-m wind speed fields from the

HNR1 (9-km domain) and three 24-h forecasts from the

9-km domain of OSSE experiments CTRL3, CYG3, and

VAM3, all valid at 1800 UTC 4 August. The fields are

instantaneous values and are therefore subject to fluc-

tuation from time step to time step. For example, the

maximum wind speed can change location and intensity

from model time step to time step. Nevertheless, the

pattern of the 10-m wind speed field gives a good overall

indication of intensity and shows storm asymmetries.

The HNR1 wind speed maximum of 52.8m s21 is more

closely approximated by CYG3 and VAM3 24-h fore-

casts (maximum wind speeds of 49.8 and 51.6m s21, re-

spectively) than by CTRL3 (47.0m s21). Also, the closed

annulus of winds greater than 40m s21 in HNR1 is most

closely approximated by the 24-h CYG3 forecast. Nei-

ther the CTRL3 nor VAM3 24-h forecast wind fields

have wind speeds greater than 40ms21 in all quadrants,

FIG. 10. (a) NR 10-m wind speed valid at 1800 UTC 4 Aug and (b)–(d) 24-h forecasts of 10-m wind speed from

OSSE experiments CNTL3, CYG3, and VAM3, valid at the same time as (a). The instantaneous wind maximum

Vmax is labeled in the lower left in each panel.
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as in the HNR1 and CYG3 forecast. Thus, the 24-h

forecast wind fields in both experiments that assimilate

CYGNSS data (CYG3 andVAM3) are improved, but in

different aspects, compared to the CTRL3 forecast.

Figure 11 shows a comparison of OSSE 24-h fore-

cast wind field to the HNR1 wind field, but valid

1800 UTC 5 August, a day later than in Fig. 10. In this

comparison, the VAM3 forecast is closest in intensity and

structure to the HNR1 wind field. Note that the CYG3

forecast wind field is not as intense or as well structured as

the CTRL3 forecast wind field. At other analysis times,

assimilation of CYGNSS data when the hurricane is only

partially covered can produce asymmetries in the result-

ing GSI 3DVar analyses in both CYG3 and VAM3

experiments (not shown). The issue of partial sampling

of tropical systems by space-based instruments that

measure ocean surface winds (passive microwave and

scatterometers) has long been a challenge forDA systems.

However, in our OSSE experiments, the asymmetries

introducedby the assimilationof simulatedCYGNSSwind

speed (CYG3) are often stronger and more disturbing to

the structure of the surface wind field than the assimilation

of VAM CYGNSS winds (VAM3). The more complete

set of information presented to the DA system as VAM

CYGNSS winds is likely the reason that these winds pro-

duce consistently better analyses and 0–48-h forecasts,

compared to CYG experiments. This is one explanation

for the differences between CYG3 and VAM3 0–48-h

forecast errors presented in Fig. 7 (section 4a).

5. Summary and conclusions

The potential value of observations to be collected by

the NASA Cyclone Global Navigation Satellite System

(CYGNSS) for hurricane analysis and forecasting is

explored in a simulation study. Since vector winds

have more information content than scalar winds, two

approaches to assimilating the CYGNSS observations

FIG. 11. As in Fig. 10, but for (a) NR valid time of 1800 UTC 5 Aug and (b)–(d) 24-h OSSE experiment forecasts

valid at 1800 UTC 5 Aug.
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were tested: CYGNSS winds were assimilated as scalar

wind speeds and as wind vectors determined by the VAM

(as described by L18). Because TCs can evolve rapidly,

results from three different DA cycle intervals (1, 3, and

6 hourly) were compared to assess CYGNSS impact.

TheOSSE experiment results on the 9-km domain are

evaluated with respect to the HNR1 9-km domain. A

combination of statistical evaluations of analysis and

forecast errors and phenomenological evaluations of the

OSSE hurricane 10-m wind fields demonstrates a num-

ber of consistent findings. Overall, the results show that

impacts of assimilating simulated CYGNSS data on the

analysis and forecasts are positive and that the OSSE

system performance is sensitive to cycling frequency.

Analysis and forecast errors for all experiments (CTRL,

CYG, and VAM) are lowest for 3-hourly DA cycling

and lower than 6- and 1-hourly errors with statistical

significance greater than 95% for 0–36-h forecast lead

times. This result demonstrates that the interaction be-

tween hurricane forecasts in the HWRF Model and

3-hourly application of GSI 3DVar are the most bene-

ficial to the maintenance of a balanced cyclone during

DA cycling. Therefore, the following summary of results

focuses on 3-hourly DA cycling experiments, though

similar results hold for all cycling frequencies.

For the 3-hourly DA cycling OSSE experiments,

CYGNSS data improve the forecast intensity of the sim-

ulated hurricane over the first 48h by 2–5hPa for mini-

mum sea level pressure and by 2–6kt for maximum wind

speed, compared to experiment CTRL3. These improve-

ments are statistically significant at the 95% confidence

level for the VAM3 experiment and at a 90% confidence

level for the CYG3 experiment. There is no statistically

significant reduction or increase in track error for OSSE

experiments CYG3 or VAM3, compared to CTRL3. For

forecast hours 48–96, the intensity improvement in the

VAM3 experiment is reduced to near zero, and the in-

tensity improvement in CYG3 experiment is still positive

but with lower statistical confidence (i.e., ,95%). This

improvement in forecasts due to CYGNSS observations is

also quantified as a reduction of integrated kinetic energy

(IKE) error in all experiments that assimilate simulated

CYGNSS data, compared to CTRL experiments. From

examples of 24-h HWRF forecasts of the 10-m surface

winds along with the validating HNR1 wind fields, the

structure of the inner-core 10-m wind field in CYG and

VAM experiment forecasts is improved, compared to

CTRL experiments.

These results suggest that for forecast hours 0–36,

assimilation of VAM CYGNSS vectors improves the

intensity and structure of the 10-m wind field in HWRF

forecasts more than assimilation of CYGNSS wind

speed alone. When GSI 3DVar is applied to cases with

partial coverage of the hurricane circulation by simu-

lated CYGNSS wind observations, assimilation of

CYGNSS wind speed routinely produces larger asym-

metries in the analyzed hurricane wind field, compared

to assimilating VAM CYGNSS vectors. The evidence

for this can be seen in the reduction of mean MSLP and

maximum wind speed errors for VAM experiments,

compared to CYG experiments for forecast hours

0–36h. Further examples in L18 show that the VAM

wind vectors are dynamically consistent with the back-

ground. Greater impact from CYGNSS is anticipated

when plans are realized to integrate the VAM into the

HWRF DA system as a preprocessor for CYGNSS ob-

servations (L18). It should be noted that using HWRF

short-term forecasts as backgrounds for VAM analyses

will bias VAM CYGNSS vectors toward HWRF model

solutions, including model errors. However, for the

small spatial scales in the wind field near the centers of

TCs, it is arguable that no better choice of backgrounds

for VAM wind vector analyses exists for use in near-

real-time operations.

The most important limitations of the present study

are that static background error covariance (BEC) is

used and that this is a single case study. Since TCs are

highly structured phenomena, the true BECs are com-

plex and poorly approximated by the static BECs used in

this study. Ensemble and hybrid DAmethods should be

used in future OSSEs and observing system experiments

(OSEs) to overcome this limitation. A comparison of

multiscale GSI-based EnKF and 3DVar assimilation

shows that the EnKF produces improved analysis and

forecasts primarily due to local, flow-dependent back-

ground error covariances and cross-variable correlation

(Johnson et al. 2015). One storm is clearly too small of a

sample size to draw any general results, and a much

larger sample of simulated TCs in different ocean basins is

required to generate more robust error statistics. This

study should be extended to multiple TCs using real data.

The 2017 hurricane season provides the first opportunity to

systematically observe tropical cycloneswith theCYGNSS

constellation. During this period, the authors plan to in-

vestigate the impact of real CYGNSS data, assimilating

both scalar wind speed and VAM CYGNSS vectors, in

OSEs that parallel HWRF operations.
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